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Overview

• Background

• Problem statement and assumptions

• Methodology

• Illustrations

• Conclusions

• Future Work
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Background

• Chemical and biological WMDs are a current threat to

the United States

– 2001 U.S.: anthrax attacks

– 1998 Iraq: “cocktail” of weapons killed 5,000+

– 1995 Tokyo: sarin nerve gas, killed 12, injured thou-

sands

• Terrorist groups are willing to use asymmetric measures

– Easy manufacturing, storing, and transportation ap-

peal to terrorists
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Problem Dynamics

• A chemical agent weapon is released over a fixed opera-

tional site

– Entire site enters the highest level of MOPP

– Contamination from secondary vapors is the main con-

cern

• Reduce mission oriented protective posture (MOPP)

– MOPP is cumbersome

– High levels of MOPP can reduce work efficiency
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Problem Dynamics

 

Figure 1. Mission-oriented protective postures.

• MOPP 0, MOPP 1, MOPP 2, MOPP 3, MOPP 4, MOPP Alpha

• Progressively add gear for increased safety

Air Force Institute of Technology
Ref:AFVA 32-4012, http://www.fas.org/nuke/guide/usa/doctrine/usaf/32401200.pdf, 1 March 2005.
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Problem Statement

• Develop an optimal sampling strategy

– Route a search crew

∗ Reach as many locations as possible (to identify
maximum number of areas below the vapor concen-
tration threshold)

∗ Time constraint

• Provide a framework for future work

– Using sensor data

– Predicting future hazard areas

Air Force Institute of Technology
UNCLASSIFIED

6



 

Model Assumptions

• Rectangular region with a finite number of “critical” areas

• Single crew that samples vapor concentrations

• Static, deterministic, and symmetric travel times

• Travel at constant velocity with zero delays

• Fixed amount of time allotted for the search
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Model Assumptions

• Chemical agent/characteristics are known

• Only one instrument reading is required, consuming a

fixed amount of time

• Known fixed threshold indicating contamination/no con-

tamination

• Secondary vapor concentrations evolve spatially
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Optimization Model

• Model the site and its critical areas as a network

• Develop a technique for optimally searching the site

• Desired outcome: Identify areas where secondary vapor

levels have decreased (below the fixed vapor concentra-

tion level v∗) so MOPP can be safely reduced at those

locations
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Network Model

Consider the following notional site
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Figure 2. Graphical depiction of areas on an installation.
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Network Model

Definitions:

• G = (N ,A) describes the graph with:

– N ≡ {1,2, ..., N}, where N is the number of critical

areas

– A ≡ set of arcs (i, j) for i, j ∈ N

Air Force Institute of Technology
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Network Model

• Ni ≡ set of nodes adjacent to node i

• ti,j ≡ constant time required to travel from node i to
node j

– ti,j > 0, ∀(i, j) ∈ A

– ti,j = tj,i

• vj(t) ≡ nonnegative vapor concentration at node j ∈ N
at time t

• rj(t) ≡ binary reward received from searching node j at
time t

Air Force Institute of Technology
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Network Model

 

4 
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3 
t1,3 

t3,4 

t2,4 

t1,2 

t1,4 

t2,3 

v1(t) v3(t) 

v2(t) v4(t) 

Figure 3. Example of the network representation for a 4-node site.

• N = {1,2,3,4}

• A = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4),
(2,1), (3,1), (4,1), (3,2), (4,2), (4,3)}
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Well-known Network Models

• Shortest Path Problem (SPP)

– Path from source to sink

– Not all nodes must be reached

• Knapsack Problem

– Maximize a value with a constraint on the resource

– Order does not matter
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Well-known Network Models

• Travelling Salesperson Problem (TSP)

– Minimize tour length

– Must reach every city

– Start and end at the origin
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Methodology

We consider four distinct cases:

• Static and deterministic vapor concentrations

• Static and stochastic vapor concentrations

• Dynamic and deterministic vapor concentrations

• Dynamic and stochastic vapor concentrations
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Dynamic and Deterministic

• Deterministic:

– Assume vapor level concentration at each node can be

calculated deterministically

• Dynamic:

– Vapor levels depend on time, vj(t), for all j ∈ N , t ≥ 0
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Dynamic and Deterministic

Objective: Maximize reward:

max
∑

i∈N

∑

j∈N
rj(t)xi,j

• Time constraint

• Backtracking is allowed

• Vapor concentrations are dynamic ⇒ rewards are dynamic

• Possibly not all nodes will be reached
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Algorithm

Initialization:

N = {1,2, ..., N}; Ni = {j : i → j};
R = ∅; ψ = ∅;
t ← t0;

i = 1;

Calculate current vapor level at node i, vi(t)

If vi(t) < v∗

ri(t) ← 1;

R← {i}; ψ ← ψ ∪ {i};
Else

ri(t) ← 0;

ψ ← ψ ∪ {i};
End

Air Force Institute of Technology
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Algorithm

Step 1

Calculate vj(t + ti,j) ∀j ∈ Ni

If vj(t + ti,j) < v∗

rj(t + ti,j) ← 1;

Else

rj(t + ti,j) ← 0;

End

Air Force Institute of Technology
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Algorithm

Step 2

For each j ∈ N such that rj = 1

Choose j such that vj(t + ti,j) = argminj∈Ni
{v∗ − vj(t + ti,j)}

R ← R∪ {j};
ψ ← ψ ∪ {j};

End

If rj(t + ti,j) = 0 ∀ j ∈ Ni

Choose j such that ti,j = minj{ti,j}∀j ∈ Ni

ψ ← ψ ∪ {j};
End

t ← t + ti,j;
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Algorithm

Step 3

If t ≥ T

STOP

Else

i ← j;

Return to Step 1

End
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Dynamic/Deterministic

Result: iterative process yields a time-adaptive policy

• Future decisions depend on arrival times at nodes

• Vapor concentrations (rewards) drive the solution
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Dynamic/Deterministic

Network Configuration

 
 
 
 
 
 
 
 

 

4 

1 

2 

6 

9 

8 
3 

5 

7 

10 

6.16 

7.31 

6.52 7.00 

6.71 

6.63 8.40 
6.88 

7.20 

7.18 

10.05 

7.94 

6.29 

6.76 

9.13 

5.57 

7.43 

Air Force Institute of Technology
UNCLASSIFIED

24



 

Dynamic/Deterministic

Example: Iteration 1: t0 = 7
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0.0035 
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Dynamic/Deterministic

Iteration 2:
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Dynamic/Deterministic

Iteration 3:
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Dynamic/Deterministic

Final Solution:
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Dynamic/Deterministic

Table 1. Vapor concentrations and rewards for nodes in ψ.

Node t (min) vj(t) rj(t)

5 7.00 0.000650 0
8 13.16 0.005400 0

10 18.73 0.007000 0
7 26.16 0.005600 0
5 32.92 0.002800 0
8 39.08 0.002200 0
10 44.65 0.001400 0
4 53.78 0.000410 1
7 60.78 0.000330 1
10 68.21 0.000190 1
8 73.78 0.000110 1
9 81.72 0.000059 1
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Dynamic/Deterministic

Table 2. Vapor concentrations and rewards at termination.

Node vj(81.72) rj(τ
∗)

1 0.000023 1
2 0.000025 1
3 0.000030 1
4 0.000034 1
5 0.000040 1
6 0.000042 1
7 0.000052 1
8 0.000054 1
9 0.000059 1
10 0.000057 1
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Dynamic and Stochastic

• Time-variant probability distribution for each node (e.g.,

Vj(t) ∼ exp(µj(t)) for all j ∈ N )

• Objective: Maximize reward - The number of areas searched

where the vapor concentration has most likely decreased

below v∗

– Reward is dynamic and computed from the expected

value

– If E[Vj(t)] < v∗, rj(t) = 1, otherwise rj(t) = 0.
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Algorithm

Initialization:

N = {1,2, ..., N}; Ni = {j : i → j};
R = ∅; ψ = ∅;
t ← t0;

i = 1;

Obtain realization of vapor level vi(t)

If vi(t) < v∗

ri(t) ← 1;

R← R∪ {i}; ψ ← ψ ∪ {i};
Else

ri(t) ← 0;

ψ ← ψ ∪ {i};
End

Air Force Institute of Technology
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Algorithm

Step 1

Calculate πj(t + ti,j) ≡ P{Vj(t + ti,j) < v∗} ∀j ∈ Ni

Step 2

Choose j such that πj(t) = maxj∈Ni
P{Vj(t + ti,j) < v∗}

Obtain instrument reading at this node.

If vj(t + ti,j) < v∗

rj(t) ← 1; R← R∪ {j}; ψ ← ψ ∪ {j};
t ← t + ti,j;

Else

rj(t) ← 0;

ψ ← ψ ∪ {j};
t ← t + ti,j;

End

Air Force Institute of Technology
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Algorithm

Step 3

If t ≥ T

STOP

Else

i ← j;

Return to Step 1

End
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Dynamic/Stochastic

Result: iterative process yields a time-adaptive policy

• Future decisions depend on arrival times

• Probability a vapor concentration is below the threshold

v∗ drives the solution
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Dynamic/Stochastic

Example: Iteration 1:
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Dynamic/Stochastic

Iteration 2:
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P{V4(20.83) < v*}=  
0.816 

P{V2(20.60) < v*}=  
0.811 
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Dynamic/Stochastic

Table 3: Vapor concentrations for nodes in ψ (v∗ = 6.0× 10−4).

Node t (min) vj(t) rj(t)

5 7 0.0011 0
1 14.31 0.000012 1
4 20.83 0.000106 1
10 29.96 0.000172 1
7 37.39 0.000103 1
5 44.15 0.000113 1
1 51.46 0.000172 1
4 57.98 0.000179 1
10 67.11 0.000609 1
7 74.54 0.000693 1
5 81.3 0.000803 1
1 88.61 0.000001 1
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Summary/Conclusions

• Ignoring dynamics may lead to under- or over-estimation
of the number of safe areas (in these examples)

• Spatiotemporal characteristics are critical in developing
the sampling strategy

• Want to minimize Type II error (i.e., accept H0 that area
is safe given it is not)

• Data was assumed to exist for illustrative purposes, how-
ever...

• Real problem presents significant data requirements
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Future Work

• Relax assumptions

– Consider non-deterministic travel times

– Multiple search crews

– Estimate probability distributions

• Incorporate real-time information

– Real-time concentration readings from sensors

– Road closures/openings

– Weather changes (e.g., wind velocity, temperature,
humidity, etc.)
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Questions?
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Backups
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Backup: A-D Equation

The following parameters must be known to employ advec-
tion diffusion equation to compute vj:

x, y, z ≡ coordinates in the direction of the mean wind, hor-
izontal cross-wind, and upwards vertical direction.

kx, ky, kz ≡ eddy diffusivities in m2sec−1

q ≡ the total mass release in kg

h ≡ instantaneous gas release height above the ground in m

u ≡ wind velocity in m/sec

Air Force Institute of Technology
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Backup: A-D Equation

vj =
q

8π
3
2(kxkykz)1/2t

3/2
0

exp

[
−(x− ut0)

2

4kxt0
− y2

4kyt0

]
×

(
exp

[
−(z − h)2

4kzt0

]
+ exp

[
−(z + h)2

4kzt0

])
. (1)

Ref: Kathirgamanathan, P., McKibbin, R., and R.I. McLachlan (2003).
Source release-rate estimation of atmospheric pollution from a non-
steady point source - Part 1: Source at a known location. Res. Lett.
Inf. Math. Sci., 5, 71-84.
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Backup: A-D Equation

Equation 1 can be simplified to

vj =
q

8π
3
2(kxkykz)1/2t

3/2
0

exp

[
−(x− ut0)

2

4kxt0
− y2

4kyt0

]
×

(
2exp

[
− h2

4kzt0

])
, (2)

since z = 0 for our numerical illustrations.
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Backup: Initial Rate Parameters

Table 6. Rate parameters chosen for the exponential distributions used
for example 2.

Node µj E[Vj](×10−4) rj

1 6666.67 1.50 1
2 1538.46 6.50 0
3 1322.75 7.56 0
4 1574.80 6.35 0
5 1754.39 5.70 1
6 10000.00 1.00 1
7 4347.83 2.30 1
8 2222.22 4.50 1
9 909.09 11.00 0
10 7692.31 1.30 1
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Case 1: Static and Deterministic

• Deterministic:

– Assume vapor level concentration at each node is cal-

culated via a deterministic formula immediately after

the attack

• Static:

– Assume for each j ∈ N , vj does not evolve over time

Air Force Institute of Technology
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Case 1: Static/Deterministic

Objective: Minimize time required to reach as many areas

as possible to obtain the maximum reward (i.e., maximum

number of areas not requiring protective gear).

• Time constraint implies it is possible that not all areas

will be sampled

• No backtracking unless necessary (i.e., there is no reward

for returning to an area)

• No subtours (S ⊂ N ≡ set of all possible subtours)
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Case 1: Static/Deterministic

 

2 1 

3 4 

Figure 4. Example of subtour in a 4-node site.
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Case 1: Static/Deterministic

max
∑

i∈N

∑

j∈N
rjxi,j(opt), min

∑

i∈N

∑

j∈N
ti,jxi,j

subject to
∑

i∈N

∑

j∈N
ti,jxi,j < T

∑

j∈N
xs,j = 1 for s ∈ N

∑

i∈N
xi,j ≤ 1 for j = 1, ..., N ; j 6= i

∑

j∈N
xi,j ≤ 1 for i = 1, ..., N ; i 6= j

xi,j + xj,i ≤ 1 for all (i, j) ∈ A∑

i∈S

∑

j∈S
xi,j ≤ |S| − 1 for S ∈ N ,2 ≤ |S| ≤ N − 1

xi,j ∈ {0,1}
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Case 1: Static/Deterministic

Example 1: Consider the following 10-node network
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rj = 1 for j = 1,2,3,6,8,10; rj = 0 for j = 4,5,7,9
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Case 1: Static/Deterministic

Solution:
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• Total time of search: τ ∗ = 62.85 minutes

• Optimal path: ψ = [5,8,10,7,4,1,2,3,6,9]
Total reward: r∗ = 6 from nodes 1, 2, 3, 6, 8, 10

Air Force Institute of Technology
UNCLASSIFIED

52



 

Case 2: Static and Stochastic

• Stochastic: Assume vapor level concentration at each

node is a random variable Vj, for all j ∈ N , with an

associated probability distribution

• Static: P{Vj ≤ v∗} does not change with time, nor does

E[Vj] ∀j ∈ N
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Case 2: Static/Stochastic

Objective: Minimize time required to reach as many areas as

possible to obtain the maximum reward

• Same formulation as Case 1

• Rewards are found from expected vapor concentrations

– E.g., Vj ∼ exp(µj) for all j ∈ N

– E[Vj] = 1
µj

– If E[Vj] < v∗, rj = 1, otherwise rj = 0.
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Case 2: Static/Stochastic

max
∑

i∈N

∑

j∈N
rjxi,j(opt), min

∑

i∈N

∑

j∈N
ti,jxi,j

subject to
∑

i∈N

∑

j∈N
ti,jxi,j < T

∑

j∈N
xs,j = 1 for s ∈ N

∑

i∈N
xi,j ≤ 1 for j = 1, ..., N ; j 6= i

∑

j∈N
xi,j ≤ 1 for i = 1, ..., N ; i 6= j

xi,j + xj,i ≤ 1 for all (i, j) ∈ A∑

i∈S

∑

j∈S
xi,j ≤ |S| − 1 for S ∈ N ,2 ≤ |S| ≤ N − 1

xi,j ∈ {0,1}
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Case 2: Static/Stochastic
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• Total time of search: 62.85 minutes

• Optimal path: ψ = [5,8,10,7,4,1,2,3,6,9]

• Total reward: r∗ = 6 from nodes 1, 5, 6, 7, 8, 10
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Comparison: Deterministic Results

Table 4. Comparison of solutions to the static/deterministic and dy-
namic/deterministic examples.

Static Dynamic

Node rj Node rj(τ)
5 0 5 0
8 1 8 0
10 1 10 0
7 0 7 0
4 0 5 0
1 1 8 0
2 1 10 0
3 1 4 1
6 1 7 1
9 0 10 1

8 1
9 1

Total Time (min) r∗ Total Time (min) r∗(τ ∗)
62.85 6 81.72 5
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Comparison: Deterministic Results

• Static/deterministic vapor concentration case

– Search each node exactly once

– Less amount of time

• Dynamic/deterministic vapor concentration case

– Searches only critical nodes

– Utilizes time allotted

– Total reward value accounts for dynamic nature of

concentrations
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Comparison: Deterministic Results

Main result of comparisons: Incorporating temporal evolution
reduces risk of overestimating/underestimating the number
of areas safely operating without protective gear.

• Solution 1: Static

– 60% of the areas are determined to be safe

– 33% of those will become unsafe at later times

• Solution 2: Dynamic

– 50% of areas are determined to be safe

– 3 of these were previously unsafe
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Comparison: Stochastic Results

Table 5. Comparison of solutions to the static/stochastic and dynamic/stochastic
examples.

Static Dynamic

Node rj Node rj(τ)
5 1 5 0
8 1 1 0
10 1 5 0
7 1 7 1
4 0 10 1
1 1 8 1
2 0 6 1
3 0 3 1
6 1 5 0
9 0 1 0

4 0
10 1

Total Time (min) r∗ Total Time (min) r∗(τ ∗)
62.85 6 88.61 5
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Comparison: Stochastic Cases

• Static/stochastic vapor concentration case

– Search each node exactly once

– Less amount of time

– Reward based on expected vapor concentrations

• Dynamic/stochastic vapor concentration case

– Search is driven by probability a node will be less than
the threshold v∗

– Rewards determined from expected values and rate
parameters are time-dependent
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Comparison: Stochastic Cases

Main result: Reduce risk of overestimating/underestimating

safe areas in dynamic case. Stochastic elements account for

randomness of the real problem.

• Solution 1:

– 60% of areas are determined to be safe

– Following this path declares safe areas prematurely

– 2 of the areas would likely not be safe at later times
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Comparison: Stochastic Cases

• Solution 2:

– 50% of areas are determined to be safe

– 1 of the unsafe nodes in the previous case becomes

safe at a later time
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